Wireless
A wireless access point (WAP), sometimes known as an access point (AP), is a networking hardware component that enables other Wi-Fi devices to connect to a wired network in computer networking. The AP could be an independent device with a physical connection to a router, but it could also be an essential part of a wireless router.
An AP connects directly to a wired local area network, typically Ethernet, and the AP then provides wireless connections using wireless LAN technology, typically Wi-Fi, for other devices to use that wired connection. APs support the connection of multiple wireless devices through their one wired connection.
Wireless Standards
There are many wireless data standards that have been introduced for wireless access point and wireless router technology. New standards have been created to accommodate the increasing need for faster wireless connections. Some wireless routers provide backward compatibility with older Wi-Fi technologies as many devices were manufactured for use with older standards.
These are the main differences between the 802.11 wireless standards:
-
802.11a: This standard was one of the first wireless networking standards and operates in the 5 GHz frequency band. It has a maximum data rate of 54 Mbps and uses Orthogonal Frequency Division Multiplexing (OFDM) as the modulation technique.
-
802.11b: This standard operates in the 2.4 GHz frequency band and has a maximum data rate of 11 Mbps. It uses Complementary Code Keying (CCK) as the modulation technique.
-
802.11g: This standard also operates in the 2.4 GHz frequency band and has a maximum data rate of 54 Mbps. It is backwards compatible with 802.11b and uses the same modulation technique (OFDM) as 802.11a.
-
802.11n (Wi-Fi 4): This standard operates in both the 2.4 and 5 GHz frequency bands and has a maximum data rate of 600 Mbps. It uses Multiple Input Multiple Output (MIMO) technology, which allows for multiple antennas on both the transmitter and receiver to increase capacity and range.
-
802.11ac (Wi-Fi 5): This standard operates in the 5 GHz frequency band and has a maximum data rate of 1.3 Gbps. It uses MIMO technology and a wider channel bandwidth (80 MHz or 160 MHz) to increase capacity and range.
-
802.11ax (Wi-Fi 6): This standard operates in both 2.4 and 5 GHz frequency bands and has a maximum data rate of 9.6 Gbps. It uses MIMO technology and Orthogonal frequency-division multiple access (OFDMA) to increase capacity and range. Wi-Fi 6 also includes features such as Target Wake Time (TWT) and BSS Coloring to improve battery life of connected devices and increase network efficiency.
It’s worth noting that the actual data rate that you’ll see in practice will be lower than the maximum data rate, and will depend on various factors such as the number of devices connected, distance from the router, and interference from other devices.
The variety of standards is due to the amount of malicious attacks than can be deploy against an access point, there are ways to mitigate and stop this attacks from happening, the best option, as anything in tech is to update to the latest, most updated Hardware and Software.
From Wikipedia’s modes of unauthorized attacks that can be used against Wireless Access Points
Modes of unauthorized access
The modes of unauthorised access to links, to functions and to data is as variable as the respective entities make use of program code. There does not exist a full scope model of such threat. To some extent the prevention relies on known modes and methods of attack and relevant methods for suppression of the applied methods. However, each new mode of operation will create new options of threatening. Hence prevention requires a steady drive for improvement. The described modes of attack are just a snapshot of typical methods and scenarios where to apply.
Accidental association
Violation of the security perimeter of a corporate network can come from a number of different methods and intents. One of these methods is referred to as “accidental association”. When a user turns on a computer and it latches on to a wireless access point from a neighboring company’s overlapping network, the user may not even know that this has occurred. However, it is a security breach in that proprietary company information is exposed and now there could exist a link from one company to the other. This is especially true if the laptop is also hooked to a wired network.
Accidental association is a case of wireless vulnerability called as “mis-association”.[10] Mis-association can be accidental, deliberate (for example, done to bypass corporate firewall) or it can result from deliberate attempts on wireless clients to lure them into connecting to attacker’s APs.
Malicious association
“Malicious associations” are when wireless devices can be actively made by attackers to connect to a company network through their laptop instead of a company access point (AP). These types of laptops are known as “soft APs” and are created when a cyber criminal runs some software that makes his/her wireless network card look like a legitimate access point. Once the thief has gained access, he/she can steal passwords, launch attacks on the wired network, or plant trojans. Since wireless networks operate at the Layer 2 level, Layer 3 protections such as network authentication and virtual private networks (VPNs) offer no barrier. Wireless 802.1X authentications do help with some protection but are still vulnerable to hacking. The idea behind this type of attack may not be to break into a VPN or other security measures. Most likely the criminal is just trying to take over the client at the Layer 2 level.
Ad hoc networks
Ad hoc networks can pose a security threat. Ad hoc networks are defined as [peer to peer] networks between wireless computers that do not have an access point in between them. While these types of networks usually have little protection, encryption methods can be used to provide security.
The security hole provided by Ad hoc networking is not the Ad hoc network itself but the bridge it provides into other networks, usually in the corporate environment, and the unfortunate default settings in most versions of Microsoft Windows to have this feature turned on unless explicitly disabled. Thus the user may not even know they have an unsecured Ad hoc network in operation on their computer. If they are also using a wired or wireless infrastructure network at the same time, they are providing a bridge to the secured organizational network through the unsecured Ad hoc connection. Bridging is in two forms. A direct bridge, which requires the user actually configure a bridge between the two connections and is thus unlikely to be initiated unless explicitly desired, and an indirect bridge which is the shared resources on the user computer. The indirect bridge may expose private data that is shared from the user’s computer to LAN connections, such as shared folders or private Network Attached Storage, making no distinction between authenticated or private connections and unauthenticated Ad-Hoc networks. This presents no threats not already familiar to open/public or unsecured wifi access points, but firewall rules may be circumvented in the case of poorly configured operating systems or local settings.
Non-traditional networks
Non-traditional networks such as personal network Bluetooth devices are not safe from hacking and should be regarded as a security risk. Even barcode readers, handheld PDAs, and wireless printers and copiers should be secured. These non-traditional networks can be easily overlooked by IT personnel who have narrowly focused on laptops and access points.
Identity theft (MAC spoofing)
Identity theft (or MAC spoofing) occurs when a hacker is able to listen in on network traffic and identify the MAC address of a computer with network privileges. Most wireless systems allow some kind of MAC filtering to allow only authorized computers with specific MAC IDs to gain access and utilize the network. However, programs exist that have network “sniffing” capabilities. Combine these programs with other software that allow a computer to pretend it has any MAC address that the hacker desires, and the hacker can easily get around that hurdle.
MAC filtering is effective only for small residential (SOHO) networks, since it provides protection only when the wireless device is “off the air”. Any 802.11 device “on the air” freely transmits its unencrypted MAC address in its 802.11 headers, and it requires no special equipment or software to detect it. Anyone with an 802.11 receiver (laptop and wireless adapter) and a freeware wireless packet analyzer can obtain the MAC address of any transmitting 802.11 within range. In an organizational environment, where most wireless devices are “on the air” throughout the active working shift, MAC filtering provides only a false sense of security since it prevents only “casual” or unintended connections to the organizational infrastructure and does nothing to prevent a directed attack.
Man-in-the-middle attacks
A man-in-the-middle attacker entices computers to log into a computer which is set up as a soft AP (Access Point). Once this is done, the hacker connects to a real access point through another wireless card offering a steady flow of traffic through the transparent hacking computer to the real network. The hacker can then sniff the traffic. One type of man-in-the-middle attack relies on security faults in challenge and handshake protocols to execute a “de-authentication attack”. This attack forces AP-connected computers to drop their connections and reconnect with the hacker’s soft AP (disconnects the user from the modem so they have to connect again using their password which one can extract from the recording of the event). Man-in-the-middle attacks are enhanced by software such as LANjack and AirJack which automate multiple steps of the process, meaning what once required some skill can now be done by script kiddies. Hotspots are particularly vulnerable to any attack since there is little to no security on these networks.
Denial of service
A Denial-of-service attack (DoS) occurs when an attacker continually bombards a targeted AP (Access Point) or network with bogus requests, premature successful connection messages, failure messages, and/or other commands. These cause legitimate users to not be able to get on the network and may even cause the network to crash. These attacks rely on the abuse of protocols such as the Extensible Authentication Protocol (EAP).
The DoS attack in itself does little to expose organizational data to a malicious attacker, since the interruption of the network prevents the flow of data and actually indirectly protects data by preventing it from being transmitted. The usual reason for performing a DoS attack is to observe the recovery of the wireless network, during which all of the initial handshake codes are re-transmitted by all devices, providing an opportunity for the malicious attacker to record these codes and use various cracking tools to analyze security weaknesses and exploit them to gain unauthorized access to the system. This works best on weakly encrypted systems such as WEP, where there are a number of tools available which can launch a dictionary style attack of “possibly accepted” security keys based on the “model” security key captured during the network recovery.
Network injection
In a network injection attack, a hacker can make use of access points that are exposed to non-filtered network traffic, specifically broadcasting network traffic such as “Spanning Tree” (802.1D), OSPF, RIP, and HSRP. The hacker injects bogus networking re-configuration commands that affect routers, switches, and intelligent hubs. A whole network can be brought down in this manner and require rebooting or even reprogramming of all intelligent networking devices.
Caffe Latte attack
The Caffe Latte attack is another way to obtain a WEP key and does not require a nearby access point for the target network.[15] The Caffe Latte attack works by tricking a client with the WEP password stored to connect to a malicious access point with the same SSID as the target network. After the client connects, the client generates ARP requests, which the malicious access point uses to obtain keystream data. The malicious access point then repeatedly sends a deauthentication packet to the client, causing the client to disconnect, reconnect, and send additional ARP requests, which the malicious access point then uses to obtain additional keystream data. Once the malicious access point has collected a sufficient amount of keystream data. the WEP key can be cracked with a tool like [aircrack-ng].
The Caffe Latte attack was demonstrated against the Windows wireless stack, but other operating systems may also be vulnerable.
The attack was named the “Caffe Latte” attack by researchers Md Sohail Ahmad and Vivek Ramachandran because it could be used to obtain the WEP key from a remote traveler in less than the 6 minutes it takes to drink a cup of coffee.
How can these attacks be mitigated
Like I mentioned before, the best way is to upgrade to the last, most updated Hardware and Software. But here are some examples of how to avoid getting in the hands of hackers with bad intentions:
Wireless intrusion prevention concepts
There are three principal ways to secure a wireless network.
- For closed networks (like home users and organizations) the most common way is to configure access restrictions in the access points. Those restrictions may include encryption and checks on MAC address. Wireless Intrusion Prevention Systems can be used to provide wireless LAN security in this network model.
- For commercial providers, hotspots, and large organizations, the preferred solution is often to have an open and unencrypted, but completely isolated wireless network. The users will at first have no access to the Internet nor to any local network resources. Commercial providers usually forward all web traffic to a captive portal which provides for payment and/or authorization. Another solution is to require the users to connect securely to a privileged network using VPN.
- Wireless networks are less secure than wired ones; in many offices intruders can easily visit and hook up their own computer to the wired network without problems, gaining access to the network, and it is also often possible for remote intruders to gain access to the network through backdoors like Back Orifice. One general solution may be end-to-end encryption, with independent authentication on all resources that shouldn’t be available to the public.
There is no ready designed system to prevent from fraudulent usage of wireless communication or to protect data and functions with wirelessly communicating computers and other entities. However, there is a system of qualifying the taken measures as a whole according to a common understanding what shall be seen as state of the art. The system of qualifying is an international consensus as specified in ISO/IEC 15408.
A wireless intrusion prevention system
Main article: Wireless Intrusion Prevention System
A Wireless Intrusion Prevention System (WIPS) is a concept for the most robust way to counteract wireless security risks. However such WIPS does not exist as a ready designed solution to implement as a software package. A WIPS is typically implemented as an overlay to an existing Wireless LAN infrastructure, although it may be deployed standalone to enforce no-wireless policies within an organization. WIPS is considered so important to wireless security that in July 2009, the Payment Card Industry Security Standards Council published wireless guidelines for PCI DSS recommending the use of WIPS to automate wireless scanning and protection for large organizations.
Security measures
There are a range of wireless security measures, of varying effectiveness and practicality.
SSID hiding
Further information: Network cloaking
A simple but ineffective method to attempt to secure a wireless network is to hide the SSID (Service Set Identifier). This provides very little protection against anything but the most casual intrusion efforts.
MAC ID filtering
One of the simplest techniques is to only allow access from known, pre-approved MAC addresses. Most wireless access points contain some type of MAC ID filtering. However, an attacker can simply sniff the MAC address of an authorized client and spoof this address.
Static IP addressing
Typical wireless access points provide IP addresses to clients via DHCP. Requiring clients to set their own addresses makes it more difficult for a casual or unsophisticated intruder to log onto the network, but provides little protection against a sophisticated attacker.
802.11 security
Main article: IEEE 802.1X
IEEE 802.1X is the IEEE Standard authentication mechanisms to devices wishing to attach to a Wireless LAN.
Regular WEP
Main article: Wired Equivalent Privacy
The Wired Equivalent Privacy (WEP) encryption standard was the original encryption standard for wireless, but since 2004 with the ratification WPA2 the IEEE has declared it “deprecated”, and while often supported, it is seldom or never the default on modern equipment.
Concerns were raised about its security as early as 2001, dramatically demonstrated in 2005 by the FBI, yet in 2007 T.J. Maxx admitted a massive security breach due in part to a reliance on WEP and the Payment Card Industry took until 2008 to prohibit its use – and even then allowed existing use to continue until June 2010.
WPAv1
Main article: Wi-Fi Protected Access
The Wi-Fi Protected Access (WPA and WPA2) security protocols were later created to address the problems with WEP. If a weak password, such as a dictionary word or short character string is used, WPA and WPA2 can be cracked. Using a long enough random password (e.g. 14 random letters) or passphrase (e.g. 5 randomly chosen words) makes pre-shared key WPA virtually uncrackable. The second generation of the WPA security protocol (WPA2) is based on the final IEEE 802.11i amendment to the 802.11 standard and is eligible for FIPS 140-2 compliance. With all those encryption schemes, any client in the network that knows the keys can read all the traffic.
Wi-Fi Protected Access (WPA) is a software/firmware improvement over WEP. All regular WLAN-equipment that worked with WEP are able to be simply upgraded and no new equipment needs to be bought. WPA is a trimmed-down version of the 802.11i security standard that was developed by the IEEE 802.11 to replace WEP. The TKIP encryption algorithm was developed for WPA to provide improvements to WEP that could be fielded as firmware upgrades to existing 802.11 devices. The WPA profile also provides optional support for the AES-CCMP algorithm that is the preferred algorithm in 802.11i and WPA2.
WPA Enterprise provides RADIUS based authentication using 802.1X. WPA Personal uses a pre-shared Shared Key (PSK) to establish the security using an 8 to 63 character passphrase. The PSK may also be entered as a 64 character hexadecimal string. Weak PSK passphrases can be broken using off-line dictionary attacks by capturing the messages in the four-way exchange when the client reconnects after being deauthenticated. Wireless suites such as aircrack-ng can crack a weak passphrase in less than a minute. Other WEP/WPA crackers are AirSnort and Auditor Security Collection. Still, WPA Personal is secure when used with ‘good’ passphrases or a full 64-character hexadecimal key.
There was information, however, that Erik Tews (the man who created the fragmentation attack against WEP) was going to reveal a way of breaking the WPA TKIP implementation at Tokyo’s PacSec security conference in November 2008, cracking the encryption on a packet in 12 to 15 minutes. Still, the announcement of this ‘crack’ was somewhat overblown by the media, because as of August, 2009, the best attack on WPA (the Beck-Tews attack) is only partially successful in that it only works on short data packets, it cannot decipher the WPA key, and it requires very specific WPA implementations in order to work.
Additions to WPAv1
In addition to WPAv1, TKIP, WIDS and EAP may be added alongside. Also, VPN-networks (non-continuous secure network connections) may be set up under the 802.11-standard. VPN implementations include PPTP, L2TP, IPsec and SSH. However, this extra layer of security may also be cracked with tools such as Anger, Deceit and Ettercap for PPTP; and ike-scan, IKEProbe, ipsectrace, and IKEcrack for IPsec-connections.
TKIP
Main article: Temporal Key Integrity Protocol
This stands for Temporal Key Integrity Protocol and the acronym is pronounced as tee-kip. This is part of the IEEE 802.11i standard. TKIP implements per-packet key mixing with a re-keying system and also provides a message integrity check. These avoid the problems of WEP.
EAP
The WPA-improvement over the IEEE 802.1X standard already improved the authentication and authorization for access of wireless and wired LANs. In addition to this, extra measures such as the Extensible Authentication Protocol (EAP) have initiated an even greater amount of security. This, as EAP uses a central authentication server. Unfortunately, during 2002 a Maryland professor discovered some shortcomings. Over the next few years these shortcomings were addressed with the use of TLS and other enhancements. This new version of EAP is now called Extended EAP and is available in several versions; these include: EAP-MD5, PEAPv0, PEAPv1, EAP-MSCHAPv2, LEAP, EAP-FAST, EAP-TLS, EAP-TTLS, MSCHAPv2, and EAP-SIM.
EAP-versions
EAP-versions include LEAP, PEAP and other EAP’s.
LEAP
Main article: Lightweight Extensible Authentication Protocol
This stands for the Lightweight Extensible Authentication Protocol. This protocol is based on 802.1X and helps minimize the original security flaws by using WEP and a sophisticated key management system. This EAP-version is safer than EAP-MD5. This also uses MAC address authentication. LEAP is not secure; THC-LeapCracker can be used to break Cisco’s version of LEAP and be used against computers connected to an access point in the form of a dictionary attack. Anwrap and asleap finally are other crackers capable of breaking LEAP.
PEAP
Main article: Protected Extensible Authentication Protocol
This stands for Protected Extensible Authentication Protocol. This protocol allows for a secure transport of data, passwords, and encryption keys without the need of a certificate server. This was developed by Cisco, Microsoft, and RSA Security.
Other EAPs There are other types of Extensible Authentication Protocol implementations that are based on the EAP framework. The framework that was established supports existing EAP types as well as future authentication methods. EAP-TLS offers very good protection because of its mutual authentication. Both the client and the network are authenticated using certificates and per-session WEP keys. EAP-FAST also offers good protection. EAP-TTLS is another alternative made by Certicom and Funk Software. It is more convenient as one does not need to distribute certificates to users, yet offers slightly less protection than EAP-TLS.
Restricted access networks
Solutions include a newer system for authentication, IEEE 802.1X, that promises to enhance security on both wired and wireless networks. Wireless access points that incorporate technologies like these often also have routers built in, thus becoming wireless gateways.
End-to-end encryption
One can argue that both layer 2 and layer 3 encryption methods are not good enough for protecting valuable data like passwords and personal emails. Those technologies add encryption only to parts of the communication path, still allowing people to spy on the traffic if they have gained access to the wired network somehow. The solution may be encryption and authorization in the application layer, using technologies like SSL, SSH, GnuPG, PGP and similar.
The disadvantage with the end-to-end method is, it may fail to cover all traffic. With encryption on the router level or VPN, a single switch encrypts all traffic, even UDP and DNS lookups. With end-to-end encryption on the other hand, each service to be secured must have its encryption “turned on”, and often every connection must also be “turned on” separately. For sending emails, every recipient must support the encryption method, and must exchange keys correctly. For Web, not all web sites offer https, and even if they do, the browser sends out IP addresses in clear text.
The most prized resource is often access to the Internet. An office LAN owner seeking to restrict such access will face the nontrivial enforcement task of having each user authenticate themselves for the router.
802.11i security
The newest and most rigorous security to implement into WLAN’s today is the 802.11i RSN-standard. This full-fledged 802.11i standard (which uses WPAv2) however does require the newest hardware (unlike WPAv1), thus potentially requiring the purchase of new equipment. This new hardware required may be either AES-WRAP (an early version of 802.11i) or the newer and better AES-CCMP-equipment. One should make sure one needs WRAP or CCMP-equipment, as the 2 hardware standards are not compatible.
WPAv2
Main article: IEEE 802.11i
WPA2 is a WiFi Alliance branded version of the final 802.11i standard. The primary enhancement over WPA is the inclusion of the AES-CCMP algorithm as a mandatory feature. Both WPA and WPA2 support EAP authentication methods using RADIUS servers and preshared key (PSK).
The number of WPA and WPA2 networks are increasing, while the number of WEP networks are decreasing, because of the security vulnerabilities in WEP.
WPA2 has been found to have at least one security vulnerability, nicknamed Hole196. The vulnerability uses the WPA2 Group Temporal Key (GTK), which is a shared key among all users of the same BSSID, to launch attacks on other users of the same BSSID. It is named after page 196 of the IEEE 802.11i specification, where the vulnerability is discussed. In order for this exploit to be performed, the GTK must be known by the attacker.
Additions to WPAv2
Unlike 802.1X, 802.11i already has most other additional security-services such as TKIP. Just as with WPAv1, WPAv2 may work in cooperation with EAP and a WIDS.
WAPI
Main article: WLAN Authentication and Privacy Infrastructure
This stands for WLAN Authentication and Privacy Infrastructure. This is a wireless security standard defined by the Chinese government.
Smart cards, USB tokens, and software tokens
Security token use is a method of authentication relying upon only authorized users possessing the requisite token. Smart cards are physical tokens in the cards that utilize an embedded integrated circuit chip for authentication, requiring a card reader. USB Tokens are physical tokens that connect via USB port to authenticate the user.
RF shielding
It’s practical in some cases to apply specialized wall paint and window film to a room or building to significantly attenuate wireless signals, which keeps the signals from propagating outside a facility. This can significantly improve wireless security because it’s difficult for hackers to receive the signals beyond the controlled area of a facility, such as from a parking lot.
Denial of service defense
Most DoS attacks are easy to detect. However, a lot of them are difficult to stop even after detection. Here are three of the most common ways to stop a DoS attack.
Black holing
Black holing is one possible way of stopping a DoS attack. This is a situation where we drop all IP packets from an attacker. This is not a very good long-term strategy because attackers can change their source address very quickly.
This may have negative effects if done automatically. An attacker could knowingly spoof attack packets with the IP address of a corporate partner. Automated defenses could block legitimate traffic from that partner and cause additional problems.
Validating the handshake
Validating the handshake involves creating false opens, and not setting aside resources until the sender acknowledges. Some firewalls address SYN floods by pre-validating the TCP handshake. This is done by creating false opens. Whenever a SYN segment arrives, the firewall sends back a SYN/ACK segment, without passing the SYN segment on to the target server.
Only when the firewall gets back an ACK, which would happen only in a legitimate connection, would the firewall send the original SYN segment on to the server for which it was originally intended. The firewall doesn’t set aside resources for a connection when a SYN segment arrives, so handling a large number of false SYN segments is only a small burden.
Rate limiting
Rate limiting can be used to reduce a certain type of traffic down to an amount the can be reasonably dealt with. Broadcasting to the internal network could still be used, but only at a limited rate for example. This is for more subtle DoS attacks. This is good if an attack is aimed at a single server because it keeps transmission lines at least partially open for other communication.
Rate limiting frustrates both the attacker, and the legitimate users. This helps but does not fully solve the problem. Once DoS traffic clogs the access line going to the internet, there is nothing a border firewall can do to help the situation. Most DoS attacks are problems of the community which can only be stopped with the help of ISP’s and organizations whose computers are taken over as bots and used to attack other firms.
To sumarise the types of attacks:
Over-the-Wire Threats
- Rogue AP — Unauthorized APs connected to your network that your clients connect to instead of your Authorized APs. A rogue access point can be an unauthorized AP connected to your network by someone inside your organization without consent. These access points are security risks to your wireless and wired networks if they do not have proper security features enabled. A rogue access point can also be an AP external to your wireless network that is within your network range.
- Client Misassociation — Authorized clients on your network that associate to external neighborhood APs.
- Misconfigured AP — APs connected to your network with a configuration that does not conform to your Authorized WLAN Policy.
- Banned Device — In the Banned Device list, you can define the MAC addresses of wireless devices and clients that are blocked from connecting to your wireless network. For example, you can enter MAC addresses that belong to laptops of employees who are no longer with the organization.
- Unauthorized Association — Unauthorized clients that connect to your Authorized APs. An attacker can gain access to your network through Authorized APs if the security is weak. Unauthorized or uncategorized client connections to an Authorized AP using a Guest SSID are not treated as unauthorized associations.
- AP MAC Spoofing — An AP that spoofs the wireless MAC address of an Authorized AP. An attacker can launch an attack through an AP masquerading as a legitimate AP.
Over-the-Air Threats
- Honeypot /Evil Twin AP — These are rogue APs from nearby networks that broadcast the same SSID as an Authorized AP to appear as a legitimate AP on your network. Clients may connect to these Honeypot or Evil Twin APs and communicate vulnerable data.
- Denial of Service (DoS) Attack — DoS attacks degrade and disrupt the performance of your wireless network.
- Rogue Client — Rogue clients are unauthorized clients that connect to your wireless network.
- Ad hoc Connection — An ad hoc connection is a peer-to-peer connection between clients. Corporate data on an authorized client is vulnerable if it is communicated to an unauthorized client in an ad hoc connection.
- ICS (Internet Connection Sharing) / Bridging Client — A client that has bridged its wired and wireless adapters to allow unauthorized Wi-Fi access.